Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4064-4067, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086336

RESUMO

Spinal Cord Injury (SCI) refers to damage to the spinal cord that can affect different body functionalities. Recovery after SCI depends on multiple factors, being the rehabilitation therapy one of them. New approaches based on robot-assisted training offer the possibility to make training sessions longer and with a reproducible pattern of movements. The control of these robotic devices by means of Brain-Machine Interfaces (BMIs) based on Motor Imagery (MI) favors the patient cognitive engagement during the rehabilitation, promoting mechanisms of neuroplasticity. This research evaluates the acceptance and feedback received from patients with incomplete SCI about the usage of a MI-based BMI with a lower-limb exoskeleton. Clinical Relevance- Patients experienced satisfaction when using the exoskeleton and levels of mental and physical workload were withing reasonable limits. In addition results from the BMI were promising for the inclusion of this type of systems in rehabilitation programs.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Traumatismos da Medula Espinal , Índice de Massa Corporal , Humanos , Extremidade Inferior , Traumatismos da Medula Espinal/reabilitação
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4737-4740, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019049

RESUMO

Spinal cord injury (SCI) limits life expectancy and causes a restriction of patient's daily activities. In the last years, robotics exoskeletons have appeared as a promising rehabilitation and assistance tool for patients with motor limitations, as people that have suffered a SCI. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs), as they can be used to foster patients' neuroplasticity. However, there are not many studies showing the use of BMIs to control exoskeletons with patients. In this work we show a case study where one SCI patient has used a BMI based on motor imagery (MI) in order to control a lower limb exoskeleton that assists their gait.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Traumatismos da Medula Espinal , Marcha , Humanos , Extremidade Inferior
3.
J Rehabil Res Dev ; 49(6): 913-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23299261

RESUMO

This pilot study proposed a method for assessing the status of vascular flow measured by transcutaneous oxygen pressure (TcPO2) in the area of the ischium in people with spinal cord injury (SCI). In a sample of 38 men (two groups: 12 physically active and 26 sedentary) with thoracic SCI, the distribution of the physiological response of the tissues under load during sitting was assessed through analysis of ischium TcPO2 values obtained by an oximeter. TcPO2 baseline, recovery time of TcPO2 after sitting (Trec), the percentage of TcPO2 (%TcPO2) of maximum pressure TcPO2, and mechanic maximal pressure (Pmax) were evaluated. Trec in the physically active group was significantly lower (p < 0.05) than in the sedentary group. Likewise, significant differences in %TcPO2 between groups (p < 0.05) were also found. We concluded that the physiological response of the tissues under an individual with SCI's own weight resulting from prolonged sitting is better in those who are physically active.


Assuntos
Monitorização Transcutânea dos Gases Sanguíneos/métodos , Ísquio/irrigação sanguínea , Atividade Motora , Traumatismos da Medula Espinal/sangue , Adolescente , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Projetos Piloto , Pressão , Úlcera por Pressão/sangue , Úlcera por Pressão/etiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Estatísticas não Paramétricas , Sobrevivência de Tecidos/fisiologia , Suporte de Carga , Adulto Jovem
4.
Adapt Phys Activ Q ; 28(2): 157-72, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21757787

RESUMO

The objective was to conduct a methodological pilot study to analyze wheelchair propulsion upper limb kinematics in standard competitive play considering the functional classification of each athlete. Ten basketball players with a functional classification ranging from 1 to 4 were included in the study. Four camcorders (Kinescan-IBV) and a treadmill for wheelchairs were used. Temporal parameters were analyzed and the upper limb kinematics was obtained using ISB recommendations. The value of the temporal parameters such as push phase duration, the ratio of push phase/recovery phase, contact, and propulsion angle seems to reduce as the functional classification increases. A methodological protocol has been developed that allows the analysis of kinematic characteristics of wheelchair propulsion in basketball players taking into account their functional classification.


Assuntos
Atletas/classificação , Basquetebol/fisiologia , Pessoas com Deficiência/classificação , Cadeiras de Rodas , Adulto , Fenômenos Biomecânicos/fisiologia , Humanos , Masculino , Projetos Piloto , Extremidade Superior/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...